
DESY 03–111
FERMILAB–Pub–03/314–T

Slepton Production

at e+e− and e−e− Linear Colliders

A. Freitas1, A. von Manteuffel2 and P. M. Zerwas2

1 Fermi National Accelerator Laboratory, Batavia, IL 60510-500, USA

2 DESY Theorie, Notkestr. 85, D–22603 Hamburg, Germany

Abstract

High-precision analyses are presented for the production of scalar sleptons, selec-
trons and smuons in supersymmetric theories, at future e+e− and e−e− linear colliders.
Threshold production can be exploited for measurements of the selectron and smuon
masses, an essential ingredient for the reconstruction of the fundamental supersymmet-
ric theory at high scales. The production of selectrons in the continuum will allow us
to determine the Yukawa couplings in the selectron sector, scrutinizing the identity of
the Yukawa and gauge couplings, which is a basic consequence of supersymmetry. The
theoretical predictions are elaborated at the one-loop level in the continuum, while at
threshold non-zero width effects and Sommerfeld rescattering corrections are included.
The phenomenological analyses are performed for e+e− and e−e− linear colliders with
energy up to about 1 TeV and with high integrated luminosity up to 1 ab−1 to cover
the individual slepton channels separately with high precision.



1 Introduction

Supersymmetry [1, 2] provides us with a stable bridge [3] between the electroweak scale of
∼ 102 GeV where laboratory experiments in particle physics are performed, and the Grand
Unification / Planck scale of ∼ 1016 / 1019 GeV where all phenomena observed at low en-
ergies are expected to be rooted in a fundamental theory including gravity. Bridging more
than fourteen orders of magnitude requires a base of high precision experiments from which
the extrapolation to the Planck scale can be carried out in a solid way. Such a program
has already been pursued very successfully for the three gauge couplings which appear to
unify at the high scale [4]. A parallel program should be carried out in supersymmetric
theories for the other fundamental parameters [5], including the parameters of soft super-
symmetry breaking, which may be transferred from a hidden sector near the Planck scale
by gravitational interactions to our visible world.

A solid base for these extrapolations can be built by experiments at high-energy e+e−

and e−e− colliders [7–9] which, if operated with high luminosity, will enable us to map
out a comprehensive and precise picture of the supersymmetric sector at the electroweak
scale. After the chargino and neutralino sectors [10, 11] have been explored earlier, we
will concentrate in this analysis on the charged scalar lepton sector of the first and second
generation, in which mixing phenomena are expected to be strongly suppressed1. [The third
generation and the neutral sector will be summarized in two later addenda while the colored
sector will be analyzed in a separate report.] We have elaborated the processes

e+e− → µ̃+
i µ̃

−
i [i = L,R] (1)

and

e+e− → ẽ+i ẽ
−
j

e−e− → ẽ−i ẽ
−
j

[i, j = L,R] (2)

at the level of one-loop accuracy. At the thresholds we have calculated the production
cross-sections for off-shell particles including the non-zero width effects and the Coulombic
Sommerfeld rescattering corrections, while in the continuum the supersymmetric one-loop
corrections have been calculated for on-shell slepton production.

The threshold production of smuons, mediated by s-channel photon and Z-boson ex-
changes, proceeds through P-waves, giving rise to the moderately steep β3 behavior of the
cross-sections in the velocity β = (1 − 4m2

µ̃/s)
1/2 of the smuons. The accuracy that can

be reached in measurements of the masses mµ̃L,R
through threshold scans, is nevertheless

competitive with the accuracy achieved in the continuum by reconstructing the particles
through decay products in the final states. Non-diagonal and diagonal pairs of selectrons
however can be excited in S-waves in e+e− and e−e− collisions, mediated by t-channel neu-
tralino exchange, and they give rise to the linear β dependence of the cross-sections near the
thresholds [13]. This steep onset of the excitation curves allows us to measure the selectron
masses with unrivaled precision.

1For a summary of earlier work on this subject see Refs. [7, 12].
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Selectron production in the continuum is strongly affected by the electron-selectron-
gaugino Yukawa couplings and, as result, they can be determined very precisely by measuring
the cross-sections for the production processes. In this way the identity of the Yukawa
couplings (ĝ) with the gauge couplings (g), ĝ = g, a basic consequence of supersymmetry,
can be thoroughly investigated with high precision.

The threshold analyses in this report adopt techniques outlined earlier in Ref. [14]. The
one-loop calculations in the continuum are performed in the dimensional reduction scheme
(DRED) for regularization and with on-shell renormalization of masses and couplings. This
program must be carried out consistently for the slepton sector and the neutralino sector. In
the loop corrections all sectors of the electroweak supersymmetric model contribute, which
in general do not decouple for large supersymmetry breaking masses [15, 16]. A remarkable
feature is the appearance of anomalous threshold singularities [17], which show up as discon-
tinuities in the cross-section as a function of the center-of-mass energy. They are induced by
specific mass patterns of the particles in the loops [18], which are generally expected to be
realized in supersymmetric models but which are atypical for Standard Model calculations.

The phenomenological analyses are performed in the Minimal Supersymmetric Standard
Model (MSSM), based on the parameters of the mSUGRA Snowmass Point SPS1a [19].
They include effects of initial-state beamstrahlung radiation as well as the decays of the
sleptons. All contributions are taken into account that lead to the same final state. They
have been elaborated at the level typical for phenomenological simulations of processes at
an e+e− linear collider in the TeV range. Besides Standard Model backgrounds the most
important background channels inside SUSY are taken into account explicitly. The dominant
standard backgrounds, in particular from W+W−, ZZ and Zγ production, are eliminated
a priori by proper cuts adopted from previous experimental studies [20]. At the level of
precision required here, it is also necessary to include sub-dominant contributions from off-
shell production of gauge bosons and SUSY particles.

The final picture is quite exciting: Selectron masses can be determined at an accuracy of
50 MeV, i.e. in the per-mille range, while the masses of the less frequently produced smuons
are still accessible at the per-cent level. The same level of accuracy can also be realized
in measurements of the Yukawa couplings of the selectron sector, thus allowing for a high-
precision comparison with the corresponding gauge couplings. In summa: A high-resolution
picture of the charged slepton sector in the first and second generation can be drawn by
experiments at prospective e+e− and e−e− linear colliders.

The report is organized as follows. In Section 2 we summarize the main features of
slepton production and decay in e+e− and e−e− collisions at the Born level. Section 3
presents the predictions for smuon and selectron production at threshold in detail, leading
us to the aforementioned accuracies expected from selectron and smuon mass measurements
in threshold scans. In Section 4 slepton pair production in the continuum is described, and
exploited finally for measurements of the Yukawa couplings in the selectron sector. Partial
results had been presented earlier in Ref. [21], while additional technical details can be
found in Ref. [22]. Spectrum and properties of supersymmetric particles in the reference
point SPS1a, relevant for the present study, are summarized in the Appendix for the sake of
completeness and the reader’s convenience.
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2 Basics of Smuon and Selectron Production and Decay

2.1 Notation and Conventions

In this report we restrict ourselves to the Minimal Supersymmetric Standard Model (MSSM)
as a well-defined framework. Since the muon and electron masses are very small, the mixing
among L- and R-smuon and -selectron states, partners of the left- and right-chiral leptons,
can be neglected and the mass eigen-states correspond to the L,R eigen-states.

In the other sectors of the MSSM, mixing needs to be taken into account. The MSSM
requires two Higgs doublets Hu and Hd, which both acquire non-zero vacuum expectation
values vu and vd. The fields mix to form the Goldstone and the physical degrees of freedom
with the mixing angle

tanβ ≡ vu/vd, (3)

given by the ratio of the vacuum expectation values.
The charged higgsinos H̃±

u,d and the winos W̃± mix to form two charginos χ̃±
i (i = 1, 2),

while the neutral higgsinos H̃0
u,d and the gauginos B̃, W̃ 0 form four neutralino mass eigen-

states χ̃0
i (i = 1, 2, 3, 4).

Apart from the electroweak parameters, the spectrum of the charginos and neutralinos is
described by three mass parameters, the Higgs/higgsino parameter µ in the superpotential
and the soft SU(2) and U(1) gaugino parameters, M2 and M1, respectively. For the charginos
the mass term reads

Lmχ̃± = −(W̃−, H̃−
d

)
X

(
W̃+

H̃+
u

)
+ h.c. (4)

where W̃±, H̃±
u,d are the Weyl spinors of the charged winos and higgsinos. The mass matrix

X =

(
M2

√
2MW sin β√

2MW cosβ µ

)
(5)

can be diagonalized by two unitary matrices U and V according to

U∗XV −1 =

(
mχ̃±

1
0

0 mχ̃±
2

)
,

(
χ−

1

χ−
2

)
= U

(
W̃−

H̃−
d

)
,

(
χ+

1

χ+
2

)
= V

(
W̃+

H̃+
u

)
, (6)

generating the mass eigen-states χ±
i . In the chiral representation, the Dirac spinors χ̃±

i of
the charginos are constructed from the Weyl spinors as follows,

χ̃−
i =

(
χ−

i

χ+
i

)
and χ̃+

i =

(
χ+

i

χ−
i

)
. (7)

The neutralino mass term in the current eigen-basis is given by

Lmχ̃0
= −1

2
ψ0> Y ψ0 + h.c., ψ0 =

(
B̃, W̃ 0, H̃0

d, H̃
0
u

)>
, (8)
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Figure 1: Generic leading-order diagrams for the pair production of smuons and selectrons
in e+e− or e−e− scattering.

with the symmetric mass matrix

Y =


M1 0 −MZ sW cβ MZ sW sβ

0 M2 MZ cW cβ −MZ cW sβ

−MZ sW cβ MZ cW cβ 0 −µ
MZ sW sβ −MZ cW sβ −µ 0

 , (9)

in which the abbreviations sβ = sin β and cβ = cosβ have been introduced; sW and cW are
the sine and cosine of the electroweak mixing angle. The transition to the mass eigen-basis
is performed by the unitary mixing matrix N ,

N∗Y N−1 = diag
(
m2

χ̃0
1
, m2

χ̃0
2
, m2

χ̃0
3
, m2

χ̃0
4

)
with χ0

i = Nijψ
0
j . (10)

The Majorana spinors χ̃0
i of the physical neutralinos are composed of the Weyl spinors as

χ̃0
i =

(
χ0

i

χ0
i

)
. (11)

Explicit analytical solutions for the mixing matrices can be found in Ref. [10]2

2.2 Production Mechanisms

In supersymmetric theories with R-parity conservation scalar leptons are produced in pairs.
Since mixing can be neglected, the pairs are built of the current eigen-states with chiral
index L or R.

Scalar smuons are produced in diagonal pairs via s-channel photon and Z-boson ex-
changes in e+e− collisions, see Tab. 1 and Fig. 1 (a).

Since the intermediate state is a vector, the helicities of electron and positron must be
opposite to each other. By angular momentum conservation the scalar smuons are therefore
produced in P-wave states. This gives rise to the characteristic β3 behavior of the excitation
curves close to threshold, with β denoting the velocity of the smuons in the final state.

2Note that a convention for the chargino mass matrix X different from eq. (5) is used in Ref. [10].
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Process Exchange particles Orbital wave Threshold excitation

e+L e
−
R / e

+
Re

−
L → µ̃+

Rµ̃
−
R / µ̃

+
L µ̃

−
L γ, Z P-wave ∝ β3

e+L e
−
R → ẽ+R ẽ

−
R γ, Z, χ̃0 P-wave ∝ β3

e+Re
−
L → ẽ+R ẽ

−
R γ, Z P-wave ∝ β3

e+L e
−
R → ẽ+L ẽ

−
L γ, Z P-wave ∝ β3

e+Re
−
L → ẽ+L ẽ

−
L γ, Z, χ̃0 P-wave ∝ β3

e+L e
−
L → ẽ+R ẽ

−
L χ̃0 S-wave ∝ β

e+Re
−
R → ẽ+L ẽ

−
R χ̃0 S-wave ∝ β

e−Re
−
R → ẽ−R ẽ

−
R χ̃0 S-wave ∝ β

e−L e
−
L → ẽ−L ẽ

−
L χ̃0 S-wave ∝ β

e−L e
−
R → ẽ−L ẽ

−
R χ̃0 P-wave ∝ β3

Table 1: Classification of smuon and selectron production modes in terms of the exchanged
particles, the orbital angular momentum of the final state wave function and the rise of
the excitation curve near threshold. Specific beam polarization states are required for the
individual channels.

The cross-sections for the production of RR and LL smuon pairs by polarized elec-
tron/positron beams may be written as

σ[e+R e
−
L → µ̃+

i µ̃
−
i ] =

2πα2

3s
β3

[
1 + gi gL

s

s−M2
Z

]2

, (12)

σ[e+L e
−
R → µ̃+

i µ̃
−
i ] =

2πα2

3s
β3

[
1 + gi gR

s

s−M2
Z

]2

, (13)

with i = L,R and the left and right-chiral Z couplings

gL =
−1 + 2s2

W

2sWcW
, gR =

sW

cW
. (14)

As mentioned before, the polarization combinations with equal helicity of electron and
positron vanish. The electromagnetic coupling α may conveniently be defined at the en-
ergy scale

√
s, incorporating properly the running of the gauge coupling.

The angular distribution of the smuons follows the familiar sin2 θ rule so that the new
particles are produced preferentially perpendicular to the e+e− beam axis.

The size of the cross-sections for smuons in the mSUGRA Snowmass point SPS1a runs
up to 35 fb and 60 fb for left and right-chiral pairs, cf. Fig. 2. The cross-sections generally
reach a maximum at s ' 10m2

µ̃, while for asymptotically large energies they scale as 1/s.
Scalar electrons can be produced, besides the standard photon and Z-boson s-channel

exchanges, via neutralino χ̃0
j [j = 1 . . . 4] exchanges in the t-channel, cf. Tab. 1 and Fig. 1 (b,c),
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Figure 2: Born cross-sections for right- and left-chiral smuon pair production in unpolarized
e+e− annihilation.

thereby generating, in addition to the diagonal, also non-diagonal L/R pairs. Moreover, di-
agonal and non-diagonal selectron pairs can be generated by t-channel neutralino exchanges
in e−e− collisions, see Fig. 1 (c).

In contrast to the vectorial s-channel amplitudes, the t-channel neutralino exchanges
allow for S-wave production at the thresholds. To reduce the total angular momentum to
zero, electron and positron beams are required with equal helicities. If the helicities are
opposite, standard vectorial exchanges give rise to the familiar P-wave states, cf. Tab. 1.

The S-wave production processes are particularly appealing for selectron mass measure-
ments in threshold scans due to the steep onset of the cross-sections ∝ β. In e+e− collisions
only mixed selectron pairs, ẽLẽR, can be produced in an S-wave, while S-wave production
of diagonal selectron pairs, ẽRẽR and ẽLẽL, is possible in the e−e− mode. Moreover, e−e−

collisions provide a nearly background-free environment for selectron studies.
The Born formulae for selectron production by polarized beams read

σ[e+−i e
−
i → ẽ+i ẽ

−
i ] =

2πα2

3s
β3

[
1 + g2

i

s

s−M2
Z

]2

+
16πα2

s

4∑
j=1

4∑
k=1

|Xij |2 |Xik|2 hjk (15)

+
8πα2

s

4∑
j=1

|Xij|2
[
1 + gi

s

s−M2
Z

]
f j [i = L/R,−i = R/L],
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σ[e+i e
−
−i → ẽ+i ẽ

−
i ] =

2πα2

3s
β3

[
1 + gi g−i

s

s−M2
Z

]2

[i = L/R,−i = R/L], (16)

σ[e+L e
−
L → ẽ+R ẽ

−
L ] =

16πα2

s

4∑
j=1

4∑
k=1

XLj X
∗
Rj XRk X

∗
Lk H

jk, (17)

σ[e+R e
−
R → ẽ+L ẽ

−
R] = σ[e+L e

−
L → ẽ+R ẽ

−
L ],

σ[e−i e
−
i → ẽ−i ẽ

−
i ] =

16πα2

s

4∑
j=1

4∑
k=1

X2
ij X

∗2
ik

[
Gjk

+ +Hjk
]

[i = L/R], (18)

σ[e−L e
−
R → ẽ−L ẽ

−
R] =

16πα2

s

4∑
j=1

4∑
k=1

X∗
Lj X

∗
Rj XLk XRk h

jk, (19)

with

f j = ∆jβ − ∆2
j − β2

2
ln

∆j + β

∆j − β
, (20)

hjk =


−2β + ∆j ln

∆j + β

∆j − β
j = k

fk − f j

∆j − ∆k
j 6= k

, (21)

Gjk
± =

2

s

mχ̃0
j
mχ̃0

k

∆j ± ∆k

[
ln

∆k + β

∆k − β
± ln

∆j + β

∆j − β

]
, (22)

Hjk =


4β

s

m2
χ̃0

j

∆2
j − β2

j = k

Gij
− j 6= k

, (23)

where for the case of diagonal selectron pairs, ẽRẽR and ẽLẽL,

∆j =
2

s
(m2

ẽi
−m2

χ̃0
j
) − 1 and β =

√
1 − 4m2

ẽi
/s, (24)

while for mixed pairs

∆j =
1

s
(m2

ẽL
+m2

ẽR
− 2m2

χ̃0
j
) − 1 and β =

1

s

√
(s−m2

ẽL
−m2

ẽR
)2 − 4m2

ẽL
m2

ẽR
)2. (25)

The matrix
Xij =

[
(cW + gisW)Nj1 + (sW − gicW)Nj2

]
/
√

2 (26)

accounts for the neutralino mixing with N being the neutralino mixing matrix, see (10).
Since the higgsino components of the neutralino states couple with the small electron

mass to the electron-selectron system, the exchange mechanism automatically projects on
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the gaugino components of the neutralino wave functions. The exchange of light neutralinos
with dominant gaugino components therefore leads to large production cross-sections. Such
a scenario is realized in the reference point SPS1a.

A typical set of selectron production cross-sections is shown in Fig. 3 (a/b) for e+e− and
e−e− collisions, respectively. As expected, the t-channel neutralino exchange enhances the
cross-sections considerably. The cross-sections exceed smuon production by about an order
of magnitude.

The angular sparticle distributions for the various production processes and polarized
beams read

dσ

dΩ
[e+−i e

−
i → ẽ+i ẽ

−
i ] =

α2

4s
β3 sin2 θ

[
1 + g2

i

s

s−M2
Z

]2

+
4α2

s
β3

4∑
j=1

4∑
k=1

|Xij|2 |Xik|2 sin2 θ[
∆j − β cos θ

][
∆k − β cos θ

] (27)

+
2α2

s
β3

4∑
j=1

|Xij |2
[
1 + gi

s

s−M2
Z

]
sin2 θ

∆j − β cos θ
[i = L/R,−i = R/L],

dσ

dΩ
[e+i e

−
−i → ẽ+i ẽ

−
i ] =

α2

4s
β3 sin2 θ

[
1 + gi g−i

s

s−M2
Z

]2

[i = L/R,−i = R/L], (28)

dσ

dΩ
[e+L e

−
L → ẽ+R ẽ

−
L ] =

16α2

s
β

4∑
j=1

4∑
k=1

XLj X
∗
Rj XRk X

∗
Lk

mχ̃0
j
mχ̃0

k
/s[

∆j − β cos θ
][

∆k − β cos θ
] , (29)

dσ

dΩ
[e+R e

−
R → ẽ+L ẽ

−
R] =

dσ

dΩ
[e+L e

−
L → ẽ+R ẽ

−
L ],

dσ

dΩ
[e−i e

−
i → ẽ−i ẽ

−
i ] =

16α2

s
β

4∑
j=1

4∑
k=1

X2
ij X

∗2
ik

4∆j∆k mχ̃0
j
mχ̃0

k
/s[

∆2
j − β2 cos2 θ

][
∆2

k − β2 cos2 θ
] [i = L/R],

(30)

dσ

dΩ
[e−L e

−
R → ẽ−L ẽ

−
R] =

4α2

s
β3

4∑
j=1

4∑
k=1

X∗
Lj X

∗
Rj XLk XRk

sin2 θ[
∆j − β cos θ

][
∆k − β cos θ

] , (31)

with θ being the angle between the incoming e− and the outgoing ẽ− particles and ∆j defined
in eqs. (24), (25), respectively. Near the thresholds the angular sparticle distributions are
∝ sin2 θ for P-waves while S-wave distributions are isotropic. With rising center-of-mass
energy, the t-channel neutralino exchange however accumulates the selectrons in the forward
and backward directions as the exchange amplitudes peak near cos θ ≈ ±1:

dσ

d cos θ
[e+ e− → ẽ+i ẽ

−
i ] ∝

∑
j,k

1 − cos2 θ[
∆j − β cos θ

][
∆k − β cos θ

] s�m2
ẽi−→ 1 + cos θ

1 − cos θ
, (32)

dσ

d cos θ
[e+ e− → ẽ±R ẽ

∓
L ] ∝

∑
j,k

1[
∆j − β cos θ

][
∆k − β cos θ

] s�m2
ẽi−→ 1

(1 − cos θ)2
. (33)
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ẽ−L ẽ−L

e−e− → ẽ−ẽ−

Figure 3: Born cross-sections for selectron pair production in unpolarized e+e− (a) and
e−e− (b) collisions.
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Sparticle Mass m [GeV] Decay modes

Width Γ [GeV]

l̃R = ẽR/µ̃R m = 142.72 l̃−R → l− χ̃0
1 100%

Γ = 0.21

l̃L = ẽL/µ̃L m = 202.32 l̃−L → l− χ̃0
1 48%

Γ = 0.25 → l− χ̃0
2 19%

→ νl χ̃
−
1 33%

χ̃0
1 m = 96.18 —

χ̃0
2 m = 176.62 χ̃0

2 → ẽ±R e
∓ 6%

Γ = 0.020 → µ̃±
R µ

∓ 6%

→ τ̃±1 τ∓ 88%

→ q q̄ χ̃0
1 0.1%

χ̃±
1 m = 176.06 χ̃+

1 → τ̃+
1 ντ 100%

Γ = 0.014

Table 2: Masses, widths and branching ratios of smuons, selectrons and the light neutralino
and chargino states for the reference points SPS1a [19, 23].

2.3 Decay Mechanisms

The R-sleptons µ̃R and ẽR are expected to decay predominantly into the lightest neutralino
if the latter has a dominant bino component: l̃±R → l±χ̃0

1.
The dominant decay modes of the L-sleptons µ̃L and ẽL in the SPS1a scenario are also

expected to be decays to the lightest neutralino. However, additional heavy neutralino
cascade decays and decays to charginos generate more complicated final states [23]. The
tree-level decay widths for these two-particle decays are given by

Γ[l̃−i → l− χ̃0
j ] = α |Xij|2 ml̃i

(
1 −

m2
χ̃0

j

m2
l̃i

)2

[i = L/R, j = 1 . . . 4], (34)

Γ[l̃−L → νl χ̃
−
k ] =

α

4
|Uk1|2ml̃L

(
1 −

m2
χ̃±

j

m2
l̃L

)2

[k = 1, 2], (35)

where X denotes the matrix defined in eq. (26), while U is the chargino mixing matrix
defined in eq. (6).

Masses, widths and branching ratios for the reference point SPS1a [19, 23] are collected
in Tab. 2. While R-sleptons decay almost exclusively into light neutralinos plus leptons,
the same decay modes are also dominant for L-sleptons. Due to the fairly large value of
tanβ and, as a result, the significant stau mixing, charginos χ̃±

1 and the χ̃0
2 neutralinos

decay primarily to τ final states, so that their experimental analysis is more demanding. As
significant rates are predicted for the decay modes of the sleptons into χ̃0

1, we will focus the
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subsequent phenomenological analyses to these exceedingly clear channels: the final states
are oppositely charged leptons plus missing energy, e+e− → l+l− + E/ . Decays to χ̃0

2 with
subsequent τ decays can nevertheless be exploited to discriminate between L- and R-sleptons.

3 Slepton Production at Threshold and

Mass Measurements

Smuon pairs are produced in e+e− annihilation near threshold in P-waves as a result of
angular momentum conservation for spin-1 photon and Z-boson s-channel exchanges. This
leads to the β3 behavior of the excitation curve in the velocity of the produced particles. In
contrast, t-channel neutralino exchanges can give rise to a steep linear beta dependence of
the excitation curves for selectrons in e+e− and e−e− collisions, characteristic for states with
zero total angular momentum.

These rules are valid at the Born level but they are modified by the non-zero widths of the
produced resonances and by Sommerfeld rescattering effects generated by Coulombic photon
exchange between the slowly moving final-state particles [14]. While the non-zero widths
smear out the onset of the threshold excitation curves, Coulombic photon exchange enhances
the cross-section near threshold. For on-shell particle production, the Coulomb correction
factor is singular, ∝ β−1, so that the excitation curves are enhanced to β2 for P-waves and
they jump to non-zero values for S-waves. For the production of unstable particles, this
singular behavior is alleviated by the off-shellness and finite width effects.

Moreover, studying off-shell production of sleptons, the calculation has to be performed
for the final states after the decays of the resonances. Restricting ourselves to the simplest
neutralino χ̃0

1 and χ̃0
2 decay modes, the processes

e+e− → µ+µ− χ̃0
1 χ̃

0
1 (36)

and

e+e− → e+e− χ̃0
1,2 χ̃

0
1,2 (37)

e−e− → e−e− χ̃0
1,2 χ̃

0
1,2 (38)

must be analyzed including all channels which give rise to these final states.
The decay of L-sleptons into the next-to-lightest neutralino χ̃0

2 with the subsequent decay
χ̃0

2 → τ+τ−χ̃0
1 (cf. Tab. 2) can be used to distinguish them from R-sleptons, which predomi-

nantly decay into the lightest neutralino χ̃0
1, i.e. l̃±R → l± χ̃0

1. This is of particular importance
since in most scenarios the R-sleptons are expected to be lighter than the corresponding L-
sleptons, so that the L-sleptons are produced on top of a huge background of R-sleptons.
For scenarios with tanβ >∼ 10, the χ̃0

2 mainly decays into a τ pair and the lightest neutralino,

so that the production of an L-slepton is signaled by the appearance of additional τ jets.
The small cross-section for L-smuon production together with the branching ratio for

µ̃±
L → µ± χ̃0

2 results in expected event rates that are too low to perform a measurement of
the threshold excitation curve. Therefore, only R-smuons, but selectrons of both L and R
type will be analyzed in detail.

11



(a) Double resonance diagram (b) Single resonance diagrams
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Figure 4: The doubly and singly resonant contributions to the process e+e− → µ+µ−χ̃0
1χ̃

0
1.
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Figure 5: Coulomb correction to smuon production,
e+e− → µ+µ−χ̃0

1χ̃
0
1.

3.1 Off-shell Slepton Production

The leading contribution to the µ+µ− χ̃0
1 χ̃

0
1 final state, and to electron final states corre-

spondingly, is generated by the double resonance diagram shown in Fig. 4 (a). For invariant
µχ̃0

1 masses near the smuon mass, the smuon propagators must be replaced by the Breit-
Wigner form, which explicitly includes the non-zero width Γµ̃ of the resonance state. This
is achieved by substituting the complex parameter

m2
µ̃ → M2

µ̃ = m2
µ̃ − imµ̃Γµ̃ (39)

for the smuon mass. To keep the amplitude gauge invariant, the double-resonance diagram
of Fig. 4 (a) must be supplemented by the single-resonance diagrams of Fig. 4 (b).

3.2 Coulombic Sommerfeld Correction

The Coulomb interaction due to photon exchange between slowly moving charged particles in
Fig. 5 gives rise to large corrections to the excitation curve near threshold. For stable particles
the cross-section is modified universally by the singular coefficient σBorn → (απ/2β)σBorn at
leading order. This Sommerfeld correction [24] removes one power of the velocity β off the
threshold suppression. For the production of off-shell particles the singularity is screened [25]
and the remaining enhancement depends on the orbital angular momentum l. For smuon
and selectron P-wave production, and for selectron S-wave production one finds to leading
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order

σCoul = σBorn
απ

2βp

[
1− 2

π
arctan

|βM |2 − β2
p

2βp =mβM

]
<e
[
β2

M + β2
p

2β2
p

]l

[l = 0, 1], (40)

with the generalized velocities

βM =
1

s

√
(s−M2

+ −M2−)2 − 4M2
+M

2−, (41)

βp =
1

s

√
(s− p2

+ − p2−)2 − 4p2
+p

2−, (42)

for the complex pole masses M2
± = m2

± − im±Γ± and the virtualities p2
± of the slepton l̃±,

l̃ = ẽ, µ̃. The off-shellness damps the singularities as illustrated in Fig. 6 for the S- and
P-waves.

3.3 Final-state Analysis

The final states in the general processes e+e− → l+l− + E/ and e+e− → l+l− τ+τ− + E/ can
be generated by a large variety of background processes in addition to the signal slepton
channels. Within the SUSY sector itself, pair production of charginos and neutralinos with
subsequent (cascade) decays feed the final state l+l− + E/ . ZZ and Zh0/ZH0 intermediate
states with one particle decaying to lepton pairs, the other to a pair of χ̃0

1 will also contribute

13



to this class of final states. The final state with an additional tau pair is characteristic
for the production of a L-slepton together with a R-slepton. SUSY backgrounds to this
signature arise from neutralino production or from stau τ̃ production with the decay chain
e+e− → τ̃+τ̃− → τ+τ− χ̃0

2 χ̃
0
1 → τ+τ− e+e− χ̃0

1 χ̃
0
1.

Moreover, pure Standard Model processes, like the production of gauge boson pairs,
W+W−, ZZ and Zγ∗, leading to the final state l+l−νν̄, also have to be taken into account.
They are generically large and need to be reduced by appropriate cuts [26]. The background
from resonant Z production can easily be reduced by cutting on the invariant mass of the
lepton pair or the invisible recoil momentum around the Z-pole. Contributions from WW
pair production have a characteristic angular distribution of the final state leptons. Because
of the spin correlations and the boost factor, the leptons tend to be aligned back to back and
along the beam direction. Therefore this background can be reduced effectively by rejecting
signatures with back-to-back leptons.

Triple gauge boson production, W+W−Z and W+W−γ∗, contributes to the final state
e+e− → l+l− τ+τ− + E/ . The total cross-section for these processes is well below 1 fb [27]
and can be reduced further by applying cuts on the invariant di-lepton mass.

The dominant supersymmetric backgrounds involve decay cascades of neutralinos and
charginos that, for example following the decay chain

e+e− → χ̃0
1 χ̃

0
j

b→ l+ l− χ̃0
1,

(43)

with j > 1, generate l+l− + E/ final states. Since the lepton pair originates only from a
single neutralino decay, these backgrounds give rise to increased missing energy and lower
lepton-pair invariant mass compared to the signal, and they can effectively be reduced by
cuts on these two variables [14]. Near threshold an alternative method for reducing the
backgrounds can be applied, based on the fact that the energy of the leptons originating
from a two-body decay is defined sharply in this kinematical configuration. Thus by selecting
leptons with energies in a band ∆E ≈ 10 GeV around the nominal threshold energy El,thr =
(m2

l̃
− m2

χ̃0
j
)/(2ml̃) greatly suppresses both SM and SUSY backgrounds. This second cut

choice is applied in the following examples.
The signal-to-background ratio can further be enhanced by using beam polarization. The

optimal polarization choices for the different production processes are listed in Tab. 1. As
evident from the table, polarization of both the electron and positron beams can help to
discriminate between the slepton chiralities (see e.g. [28]). In the following 80% polarization
for the electrons and 50% polarization for the positrons is assumed.

Including the SUSY and SM backgrounds, the excitation curves, after the beamstrahlung
is switched on and the cuts defined before are applied, are displayed in Fig. 7 for two
characteristic examples, ẽ+R ẽ

−
R pair production in e+e− collisions as a P-wave process, and

ẽ−R ẽ
−
R pair production in e−e− collisions as a typical S-wave process. Separately shown are the

zero-width Born prediction, the background contributions and the final prediction including
non-zero width and rescattering effects, with the backgrounds added on.

The results expected from these simulations for the mass measurements are presented
in Tab. 3. They are based on data simulated at five equidistant points in a center-of-mass
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Figure 7: The excitation curves for ẽR pair production over Standard Model and super-
symmetric backgrounds for e+e− annihilation (left) and e−e− scattering (right). The signal
contribution with non-zero widths and Coulomb rescattering is compared with the case of
zero width and no higher order corrections. The signal is enhanced with beam polarization
as indicated, where (+) corresponds to right-handed and (−) to left-handed polarization.

energy range of 10 GeV in the threshold regions for µ̃R pair production, and diagonal and
non-diagonal ẽR and ẽL production. For the e+e− mode a total luminosity of 50 fb−1 for each
threshold scan is assumed, corresponding to 10 fb−1 per scan point. In the e−e− mode the
anti-pinch effect leads to a somewhat reduced machine luminosity. Therefore it is presumed
that a total of 5 fb−1 is available for each scan measurement, corresponding to 1 fb−1 per
scan point. For the reconstruction of the mass a binned likelihood method is employed,
using four free parameters in the fit: the slepton mass and width, a constant scale factor for
the absolute normalization of the excitation curve and a constant background level3. The
last two parameters render the mass fit independent on details of other SUSY sectors, in
particular the masses and mixings of the heavier neutralinos that are not accessible in the
slepton decays.

Evidently, S-wave ẽR production in e−e− collisions provides us with mass measurements
of 50 MeV, i.e. a relative error of less than 1 per-mille. This will presumably be the highest
accuracy that can ever be reached for sfermion mass measurements in the supersymmetric
particle sector.

3Since the remaining backgrounds after cuts are flat, they can effectively be approximated by a constant.
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Process Fitted values for slepton mass m and width Γ

e+e− → (ẽ+R ẽ
−
R) → e+e− + E/ mẽR

= 143.0+0.21
−0.19 GeV ΓẽR

= 150+300
−250 MeV

e−e− → (ẽ−R ẽ
−
R) → e−e− + E/ mẽR

= 142.95+0.048
−0.053 GeV ΓẽR

= 200+50
−40 MeV

e+e− → (ẽ±R ẽ
∓
L ) → e+e− τ+τ− + E/ mẽL

= 202.2+0.37
−0.33 GeV ΓẽL

= 240+20
−20 MeV

e−e− → (ẽ−L ẽ
−
L ) → e−e− ττττ + E/ mẽL

= 202.1+0.62
−0.44 GeV ΓẽL

= 240+500
−240 MeV

e+e− → (µ̃+
Rµ̃

−
R) → µ+µ− + E/ mµ̃R

= 143.0+0.42
−0.38 GeV Γµ̃R

= 350+400
−400 MeV

Table 3: Expected precision for the determination of slepton masses and widths from
threshold scans in e+e− and e−e− scattering. The reconstructed values are obtained from a
four-parameter fit as outlined in the text.

4 Slepton Production in the Continuum and

Determination of Yukawa Couplings

The motivation for high-precision analyses of smuon and selectron production in the contin-
uum is twofold, different though for the two species.

1.) Smuon pair production in the continuum serves as a rich source of particles which
after subsequent decays to muons and neutralinos allows us to determine the smuon and
neutralino masses. The smuon mass measurement in the continuum is competitive with the
accuracy expected from threshold scans. The R-smuon decay to the lightest neutralino will
be the gold-plated process (besides the analogous R-selectron decay) for measuring the mass
of the lightest neutralino, which is a key particle in cosmology. Smuon pair production leads
to clean µ+µ− + E/ final states that can easily be identified and controlled experimentally.
The measurement of the cross-sections therefore provides a valuable instrument for testing
supersymmetry dynamics at the quantum level.

2.) Since the precision of threshold scans in mass measurements of selectrons cannot
be rivaled, the central target of selectron pair production in the continuum, besides the
neutralino mass measurement [20, 29], is the analysis of the selectron-electron-neutralino
Yukawa couplings in the SU(2) and U(1) sectors [15]. They are predicted to be equal to
the corresponding gauge couplings in supersymmetric theories, even if the supersymmetry
breaking is included by soft terms in the Lagrangian. The relevant mechanism involves the t-
channel exchange of neutralinos. Knowledge of the neutralino masses and mixing parameters
is therefore required before high-sensitivity tests can be carried out. Thus this method is one
of the components in a complex experimental program including, in addition to the analysis
of selectron pair production, also pair production of charginos and neutralinos that in turn
are (partly) mediated by neutral and charged slepton t-channel exchanges. The synopsis of
all these channels will finally provide us with a comprehensive and detailed picture of the
entire Yukawa sector in a model-independent form.

We will separate in this report the description of the theoretical techniques necessary for
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controlling the higher-order corrections, from the application to smuon and selectron pair
production and their phenomenological evaluation, with emphasis on the analysis of Yukawa
couplings.

4.1 Renormalization of the MSSM

At the one-loop level, which we work out in this report for slepton production, dimensional
reduction (DRED) provides us with a valid regularization scheme including chiral currents4.
By reducing the kinematics in the propagation of particles to D < 4 dimensions but leaving
the number of field components unchanged, supersymmetry is preserved in the higher-order
amplitudes, and so is gauge invariance [30].

Multiplicative renormalization of masses, couplings and fields can therefore be performed
without introducing additional ad-hoc counter terms to restore the supersymmetry. The
renormalization factors Z, and equivalently the shifts of variables, that absorb all the ultra-
violet divergences, will be fixed by on-shell renormalization, i.e. the on-shell definition of the
physical particle masses, the on-shell definition of the electromagnetic gauge couplings in the
trilinear lepton-lepton-photon vertex, and normalization of the on-shell renormalized fields
to unity. As a consequence of supersymmetry and gauge symmetry, the renormalization of
all other quantities, Yukawa couplings, quartic couplings etc., induces calculable additional
shifts. This program can be carried out consistently in theories including soft supersymmetry
breaking terms5.

Characteristic classes of higher-order diagrams for propagators and vertices are depicted
in Fig. 8. Additional box diagrams, cf. Fig. 9, finally conclude the set of elements contributing
to the 2-2 transitions6.

After carrying out the renormalization program in the ultraviolet sector, infrared and
collinear divergences associated with the massless photon and lepton fields can be absorbed
by adding the real photon emission contributions, Fig. 10. Finite results are automatically
guaranteed by proceeding to experimentally well defined cross-sections, i.e. the total cross-
sections in the present analysis.

Due to large number of diagrams involved, the use of computer algebra tools for the
computation is necessary. The generation of diagrams and amplitudes is performed with
the package FeynArts [32]. Throughout the calculation, the CKM matrix is taken diagonal
and mixing between the sfermions of the first two generations is neglected. For the third
generation sfermions, the mixing between the L- and R-states is consistently taken into
account. A general covariant Rξ gauge is used in order to facilitate an additional check of
the result. Using the program FeynCalc 2.2 [33], the Lorentz and Dirac algebra is evaluated
and the loop integrals are reduced to a set of fundamental scalar one-loop functions [34].

4For the production of smuons, involving only gauge couplings at tree level, the calculation has been
repeated independently in dimensional regularization and perfect agreement has been found [22].

5A general overview of different renormalization techniques can be found in Ref. [31].
6Most of the analytical results for self-energy operators etc. are too lengthy to be presented in this report;

therefore computer codes for the calculation of the loop results are made available on the web, cf. the
concluding remarks in section 5.
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Figure 8: Generic sets of Feynman diagrams for the virtual self-energy and vertex cor-
rections to slepton production. Solid, dashed and wiggly lines indicate fermions, (Higgs)
scalars and vector bosons, respectively, whereas sfermions and gauginos are denoted by dou-
ble lines and wiggly/solid lines. The selectron-electron-neutralino vertex in the last line only
contributes to selectron production.
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Figure 9: Box-type Feynman diagrams for slepton pair production. The first row (a)
applies both to smuon and selectron production, while the second row (b) only contributes
to selectron production.
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Figure 10: Feynman diagrams for real photon emission in smuon production (a) and selec-
tron production (a)+(b).

Since the explicit analytical expressions of the virtual loop contributions are generally very
lengthy, they have been implemented into a computer code that calculates the one-loop-
corrected cross-sections, using the package LoopTools [35] for the numerical evaluation of
the basic scalar one-loop functions.

4.1.1 Gauge sector

The extension of the Standard Model to a supersymmetric theory in minimal form (MSSM)
does not introduce new couplings in the gauge/gaugino sector. The gauge sector of the
MSSM is therefore renormalized in parallel to the Standard Model. Just the self-energies
are expanded by the contributions of the supersymmetric fields in a straightforward way.
We briefly summarize the results, adopting the standard conventions of Ref. [36].

The masses of the W and Z gauge bosons are shifted by

M2
W → M2

W + δM2
W and M2

Z →M2
Z + δM2

Z. (44)

Imposing the on-shell renormalization conditions defined earlier, the mass shifts can be
expressed in terms of the transverse self-energies ΣT,

δM2
W = <e ΣWW

T (M2
W) and δM2

Z = <e ΣZZ
T (M2

Z), (45)
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with the self-energies for the gauge boson propagation in the Standard Model expanded by
supersymmetric particle contributions:

ΣV1V2
T (k2) = ΣV1V2

T (k2)
∣∣
SM

+ ΣV1V2
T (k2)

∣∣
SUSY

[Vi = γ,Z,W]. (46)

The first term includes the usual Standard Model loop contributions as in the first line of
Fig. 8, while the second term accounts for the additional loops involving pairs of supersym-
metric fields, gaugino and sfermion fields, as given in the second line of Fig. 8.

The SU(2) and U(1) gauge couplings g and g′ can be traced back to the electromagnetic
coupling e and the electroweak weak mixing angle sW = sin θW. e is renormalized as in
standard QED apart from the removal of γ-Z mixing,

e→ (1 + δZe) e with δZe =
1

2

∂Σγγ
T (k2)

∂k2

∣∣∣∣
k2=0

− sW

cW

ΣγZ
T (0)

M2
Z

. (47)

Again the gauge-boson self-energies decompose into Standard Model and specific supersym-
metric contributions as in (46).

Introducing the electroweak mixing angle in on-shell definition through the W and Z
masses as s2

W = 1−M2
W/M

2
Z, the renormalized value is formally related to the bare value by

sW → sW + δsW with
δsW

sW
=

c2W
2s2

W

[
δM2

Z

M2
Z

− δM2
W

M2
W

]
. (48)

Finally, the renormalized left- and right-handed electron fields,

eL → (1 + 1
2
δZeL) eL, eR → (1 + 1

2
δZeR) eR, (49)

are related to the electron self-energies by

δZeL = −<e
{

ΣeL(m2
e) +m2

e

∂

∂p2

[
ΣeL(p2) + ΣeR(p2) + 2/me ΣeS(p2)

]
p2=m2

e

}
, (50)

δZeR = −<e
{

ΣeR(m2
e) +m2

e

∂

∂p2

[
ΣeL(p2) + ΣeR(p2) + 2/me ΣeS(p2)

]
p2=m2

e

}
, (51)

with the decomposition

Σe(p) = p/ ωLΣeL(p2) + p/ ωRΣeR(p2) + ΣeS(p2) with ωL,R = (1 ± γ5)/2. (52)

Apart from the calculation of the (singular) QED corrections, the chiral limit of vanishing
electron mass can be safely applied, simplifying eqs. (50), (51) to

δZeL
weak = −<e ΣeL

weak(0), δZeR
weak = −<e ΣeR

weak(0). (53)
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4.1.2 Sfermion sector

In the limit of vanishing lepton masses in the first and second generation, the L- and R-
selectron and smuon fields do not mix and the mass matrices are approximately diagonal.
The “chiral” L and R states coincide with the mass eigen-states. This remains true in
higher orders as the sfermion mixing is proportional to the associated lepton mass. The L
and R fields may therefore be treated independently so that the renormalization follows the
standard procedure. With

m2
l̃i
→ m2

l̃i
+ δm2

l̃i
and l̃i → (1 + 1

2
δZ l̃

i) l̃i [l = e, µ; i = L,R], (54)

we find for the sfermion mass shift

δm2
l̃i

= <eΣl̃
i(m

2
l̃i
), (55)

and for the wave-function renormalization

δZ l̃
i = −<e ∂Σ

l̃
i(k

2)

∂k2

∣∣∣∣
k2=m2

l̃i

(56)

Here Σl̃
i(k

2) denotes the self-energy for the slepton l̃i; l = e, µ; i = L,R. Since the external
fields are superpartners, the slepton self-energies cannot be separated into a Standard Model
and a genuinely supersymmetric part.

Note that the mass shift and wave-function renormalization for L-sneutrinos coincide
with those of L-selectrons in the chiral limit we consider in this report.

4.1.3 Chargino and neutralino sector

The spectrum of two charginos and four neutralinos in the MSSM is described by the three
mass parameters µ, M2 and M1, see section 2.1. Apart from other electroweak parameters,
the system is also affected by the Higgs mixing tan β. Three chargino/neutralino masses
are sufficient to fix the mass parameters µ, M2 and M1. The renormalization of tanβ is
performed outside the chargino and neutralino sector, as will be discussed in section 4.1.4

The other three masses and the mixing parameters are then uniquely determined once
the parameters in the loop corrections are known. Following [37], the renormalization is
performed in the current eigen-basis.

1.) Starting from the chargino Lagrangian

Lch = i
[
ψ−>

σµ∂µ ψ− + ψ+
>
σ̄µ∂µ ψ

+
]− [ψ−>

X ψ+ + ψ+
>
X† ψ− ], (57)

with the current fields

ψ+ ≡
(
ψ+

1

ψ+
2

)
=

(
W̃+

H̃+
u

)
, ψ− ≡

(
ψ−

1

ψ−
2

)
=

(
W̃−

H̃−
d

)
, (58)
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the mass matrix X is renormalized by

X → X + δX with δX =

(
δM2

√
2 δ (MW sin β)√

2 δ (MW cosβ) δµ

)
, (59)

and the current fields are replaced by the normalized mass eigen-fields χ±,

ψ+ → V †
(
1 + 1

2
δZ̃L

)
χ+, ψ− → U †

(
1 + 1

2
δZ̃R

)
χ−. (60)

Besides the renormalization of the new parameters µ and M2, δX includes the renormaliza-
tion of tanβ and the W mass discussed earlier. The [infinite] multiplicative renormalization
of the wave functions is absorbed in the matrices δZ̃L, δZ̃R, and so is the [finite] renormaliza-
tion of the matrices V, U rotating the current to the mass fields. The renormalized chargino
Lagrangian and the associated counter terms may be written in the form

Lch → Lch + δLch,

Lch =
(
χ̃+

1 , χ̃
+
2

) [
i∂/− U∗XV † ωL − V X†U>ωR

](χ̃+
1

χ̃+
2

)
, (61)

δLch =
(
χ̃+

1 , χ̃
+
2

) [
i
∂/

2

(
δZ̃L†

+ δZ̃L
)
ωL + i

∂/

2

(
δZ̃R∗

+ δZ̃R>)
ωR

− (1
2
δZ̃R>

U∗XV † + 1
2
U∗XV †δZ̃L + U∗δXV †)ωL (62)

− (1
2
δZ̃L†

V X†U> + 1
2
V X†U>δZ̃R∗

+ V δX†U>)ωR

](
χ̃+

1

χ̃+
2

)
.

The physical χ± masses can be introduced in (61) after diagonalizing this part of the La-
grangian by rotation through U, V . The counterterms δµ and δM2 can thereby be adjusted
such that the propagator matrix develops poles at the on-shell chargino masses mχ̃±

1,2
. In

addition, the Z̃L,R factors can be uniquely fixed by requiring that the propagator matrix is
diagonal and that the pole residues are normalized to unity for on-shell momenta.

2.) The analogous program can be carried out in the neutralino system, though the
doubling of degrees of freedom renders the analysis more cumbersome. The bilinear part of
the neutralino Lagrangian in the current eigen-basis is given by

Ln =
i

2

[
ψ0>σµ∂µ ψ0 + ψ0

>
σ̄µ∂µ ψ

0
]− 1

2

[
ψ0>Y ψ0 + ψ0

>
Y † ψ0

]
, (63)

with ψ0 and Y given in (8) and (9), respectively. In this representation the renormalization
of the mass matrix Y is defined as

Y → Y + δY,

with

δY =


δM1 0 −δ(MZ sW cβ) δ(MZ sW sβ)

0 δM2 δ(MZ cW cβ) −δ(MZ cW sβ)
−δ(MZ sW cβ) δ(MZ cW cβ) 0 −δµ
δ(MZ sW sβ) −δ(MZ cW sβ) −δµ 0

 , (64)
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while the renormalization and the rotation from current fields ψ0 to mass eigen-spinors χ0

can be performed as

ψ0 → N †
(
1 + 1

2
δZ̃0

)
χ0. (65)

The matrix δZ̃0 absorbs the multiplicative renormalization of the current fields as well as
the renormalization of the rotation matrix. Thus the renormalized neutralino Lagrangian
can be cast into the form

Ln → Ln + δLn,

Ln =
1

2

(
χ̃0

1, χ̃
0
2

) [
i∂/−N∗Y N † ωL −NY †N>ωR

](χ̃0
1

χ̃0
2

)
, (66)

together with the counter terms

δLn =
1

2

(
χ̃0

1, χ̃
0
2

)[
i
∂/

2

(
δZ̃0† + δZ̃0

)
ωL + i

∂/

2

(
δZ̃0∗ + δZ̃0>)ωR

− (1
2
δZ̃0>N∗Y N † + 1

2
N∗Y N †δZ̃0 +N∗δY N †)ωL (67)

− (1
2
δZ̃0†NY †N> + 1

2
NY †N>δZ̃0∗ +NδY †N>)ωR

](
χ̃0

1

χ̃0
2

)
.

where the matrix N rotates the neutralino mass matrix into diagonal form according to (10).
The mass mχ̃0

1
of the lightest neutralino χ̃0

1, that will be under excellent experimental control,
may be chosen to define the remaining U(1) gaugino mass parameter M1. The masses of
the heavier neutralinos are thereafter fixed uniquely by the Higgs/higgsino and gaugino
parameters µ and M2,1. Again, the elements of the Z̃0 wave-function renormalization matrix
can be adjusted such that the elements of the neutralino propagator matrix are diagonal
with unit residues of the mass poles for on-shell momenta.

In the case of CP conservation, the renormalization of the Higgs/higgsino parameter µ
and the gaugino parameters M1 and M2 may be cast in the following form

δM2 =
[

1
2
(mχ̃±

2
µ−mχ̃±

1
M2) <e

{
mχ̃±

1
Σ±L

11 (m2
χ̃±

1
) +mχ̃±

1
Σ±R

11 (m2
χ̃±

1
) + 2 Σ±SL

11 (m2
χ̃±

1
)
}

+1
2
(mχ̃±

1
µ−mχ̃±

2
M2) <e

{
mχ̃±

2
Σ±L

22 (m2
χ̃±

2
) +mχ̃±

2
Σ±R

22 (m2
χ̃±

2
) + 2 Σ±SL

22 (m2
χ̃±

2
)
}

+M2 δM
2
W + µ δ

(
M2

W sin 2β
)]
/ (µ2 −M2

2 ),

(68)

δµ =
[

1
2
(mχ̃±

2
M2 −mχ̃±

1
µ) <e{mχ̃±

1
Σ±L

11 (m2
χ̃±

1
) +mχ̃±

1
Σ±R

11 (m2
χ̃±

1
) + 2 Σ±SL

11 (m2
χ̃±

1
)
}

+1
2
(mχ̃±

1
M2 −mχ̃±

2
µ) <e{mχ̃±

2
Σ±L

22 (m2
χ̃±

2
) +mχ̃±

2
Σ±R

22 (m2
χ̃±

2
) + 2 Σ±SL

22 (m2
χ̃±

2
)
}

+µ δM2
W +M2 δ

(
M2

W sin 2β
)]
/ (M2

2 − µ2),

(69)

δM1 =
1

N2
11

[
<e{mχ̃0

1
Σ0L

11 (m2
χ̃0

1
) + Σ0SL

11 (m2
χ̃0

1
)
}−N2

12 δM2 + 2N13N14 δµ

+ 2N11

[
N13 δ

(
MZsW cosβ

)−N14 δ
(
MZsW sin β

)]
+ 2N12

[
N13 δ

(
MZcW cosβ

)−N14 δ
(
MZcW sin β

)]]
,

(70)
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which is in agreement with [37]. Here the following decomposition of the chargino/neutralino
self-energies has been used:

Σχ
ij(p) = p/ ωLΣχL

ij (p2) + p/ ωRΣχR
ij (p2) + ωLΣχSL

ij (p2) + ωRΣχSR
ij (p2). (71)

The combinations of self-energies in (68)–(70) are equivalent to the counterterms of the
on-shell chargino and neutralino masses,

δmχ̃±
k

=
1

2
<e{mχ̃±

k
Σ±L

kk (m2
χ̃±

k
) +mχ̃±

k
Σ±R

kk (m2
χ̃±

k
) + 2 Σ±SL

kk (m2
χ̃±

k
)
}

[k = 1, 2], (72)

δmχ̃0
1

= <e{mχ̃0
1
Σ0L

11 (m2
χ̃0

1
) + Σ0SL

11 (m2
χ̃0

1
)
}
. (73)

Once the two χ̃±
1,2 chargino masses and the χ̃0

1 mass are fixed, the remaining heavier neutralino
masses are shifted by finite amounts relative to the Born terms [which, by definition, are the
eigenvalues of the renormalized mass matrix [31, 37]],

mχ̃0
k
−mBorn

χ̃0
k

= −<e{mχ̃0
k
Σ0L

kk(m
2
χ̃0

k
) + Σ0SL

kk (m2
χ̃0

k
)
}

+ (N∗δY N †)kk [k = 2, 3, 4]. (74)

The cancellation of the divergences between the neutralino self-energies and the mass matrix
counterterm δY in this expression is a non-trivial check of the method.

4.1.4 Higgs mixing tan β

At tree level, the Higgs mixing parameter tanβ is determined by three soft SUSY breaking
parameters, the diagonal mass parameters m2

1 and m2
2 as well as the Hu–Hd mixing term m2

3,
that is connected with the soft parameter Bµ. They define the bilinear part of the scalar
potential of the two Higgs doublets,

Hu =

(
φ+

u

vu + 1√
2
(φu + iρu)

)
and Hd =

(
vd + 1√

2
(φd + iρd)

−φ−
d

)
, (75)

Vbilin = m2
1

(
1
2
φ2

d + 1
2
ρ2

d + |φ−
d |2
)

+m2
2

(
1
2
φ2

u + 1
2
ρ2

u + |φ+
u |2
)

+m2
3

(
φuφd + ρuρd + φ+

u φ
−
d + φ+

u
∗
φ−

d
∗)
.

(76)

The three soft SUSY breaking parameters can be reexpressed in terms of the vacuum expec-
tation values vu and vd, and the pseudoscalar mass MA. The tree-level relation tan β = vu/vd

is modified by higher-order corrections to the Higgs potential and needs to be renormalized.
Various renormalization prescriptions have been proposed in the literature, which however

do not lead to satisfactory solutions on all accounts [38]. Renormalization prescriptions that
are derived from the Higgs potential introduce dangerously large corrections to tanβ, which
effectively invalidate the convergence of the perturbation series. Other methods impose the
renormalization condition that the Goldstone bosons to not mix with the physical Higgs
bosons for on-shell momenta [39], but the value of tan β in these schemes depends on the
gauge choice.
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Alternatively, one may define tan β in higher orders by relating it to a specific physical
process. However, any definition of tanβ through a physical process is afflicted with technical
difficulties that are introduced by the particular process. Moreover, the value of tanβ may be
extracted from different observables, for example from Higgs decays [38,40], Higgs production
processes [41], or from the cross-sections for mixed chargino pair production for moderate
values of tanβ <∼ 10 [10], while for large tanβ the τ polarization in τ̃ decays provides an

attractive opportunity [42]. Any such approach does not lead to a unique and universal
choice for the renormalization of tan β.

In the following analysis we adopt the most convenient solution by just subtracting
the divergent part in the DR scheme from the unrenormalized parameter to define the
renormalized parameter. Without loss of generality, the universal DR counterterm for tanβ
may be extracted from the mixing self-energy of the Z-boson and the pseudo-scalar Higgs
boson A0, with the natural choice for the renormalization scale being the A0-mass MA:

tanβ → tanβ + δ tanβ with δ tan β = − 1

2 cos2 βMZ
=m ΣA0Z(M2

A)
∣∣
div
, (77)

with the subscript “div” indicating that only the divergent part of the self-energy is retained.
Though being process-independent, this definition is not perfect either as the value de-

pends on the chosen gauge. [By accident it remains independent on the gauge fixing param-
eter ξ in the Rξ gauge to one-loop order]. Of course, the predictions for physical observables
remain gauge independent as the gauge dependence of tanβ|DR is neutralized by equivalent
terms in the amplitudes themselves.

4.2 Effective Yukawa Couplings

In general, quantum corrections are reduced with increasing mass of the virtual particles
inside the loops, as generally expected by the uncertainty principle and formalized by the
decoupling theorem [43]. However, in theories with broken symmetries, these corrections may
grow to large values if the mass splitting in the particle multiplets is large. High mass scales
in theories with broken symmetries can thus manifest themselves in the radiative corrections
to precision observables at much lower energies. A classical example for this phenomenon
is provided by the mass splitting in the top-bottom iso-doublet of the Standard Model [44]
which strongly affects the ρ parameter in the ratio of W - and Z-boson masses.

In theories with broken supersymmetry such a phenomenon arises if the splitting be-
tween the masses of SM particles and some of the SUSY partners becomes very large [such
scenarios are realized, for instance, in focus point theories [45]], leading to superoblique cor-
rections that grow logarithmically with the mass splitting [15, 16]. The splitting affects in
particular the relation between the gauge couplings and the associated Yukawa couplings. In
parallel to the bare couplings, the renormalized Yukawa couplings can naturally be defined
to be the same as the gauge couplings at the renormalization point if supersymmetry is
broken softly. Accordingly, in the on-shell renormalization scheme the renormalized Yukawa
couplings are defined to be equal to the renormalized on-shell gauge couplings, so that the
renormalized Lagrangian manifestly reflects the supersymmetry [modulo the soft-breaking
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Figure 11: Quark-squark loop corrections (a) to the U(1) and (b) to the SU(2) neutral
gaugino self-energies.

terms]. Nevertheless, the loops will modify in toto the two types of vertices associated with
the two couplings differently in physical amplitudes evaluated near the light SUSY scale,
or equivalently the electroweak scale. In a more intuitive language, the running of the two
couplings with energy from the high SUSY mass scale down to the low SUSY mass scale (or
electroweak scale) is different [15, 16].

These effects are rooted in the self-energies of the gaugino lines, shown in Fig. 11 (a) and
(b) for bino and wino lines, respectively. In parallel to the iso-multiplets of the Standard
Model, the non-decoupling corrections arise from large mass splittings within the supersym-
metric particle spectrum, for example for exceedingly high squark masses. The wave-function
renormalization associated with these diagrams can be projected onto effective U(1) and
SU(2) Yukawa couplings, ĝ′eff and ĝeff , defined near the light SUSY/electroweak scale Mew;
in the same way as the wave-function renormalization Zγ of the photon defines the effective
electromagnetic coupling eeff =

√
Zγ e.

The self-energy correction derived from Fig. 11 (a) for the U(1) bino propagator is given,
in leading logarithmic order of the ratio between the large SUSY and the electroweak scale,
by

Σ0
B̃,log

(p) = −p/ g′2

16π2

11

2
lnM2

Q̃
/M2

ew. (78)

This may be reinterpreted as a shift of the effective U(1) Yukawa coupling,

ĝ′2eff
ĝ′20

= 1 +
g′2

16π2

11

2
lnM2

Q̃
/M2

ew (79)

in leading logarithmic approximation, in relation to the bare Yukawa/gauge couplings ĝ′0 =
g′0. The effective U(1) gauge coupling g′2eff,log can be introduced in parallel. It is identical to
the renormalized gauge coupling g′ in the on-shell scheme,

g′2eff
g′20

= 1 +
g′2

16π2

11

6
lnM2

Q̃
/M2

ew. (80)

The ratio of U(1) Yukawa to gauge coupling is therefore given effectively by

ĝ′2eff
g′2eff

= 1 +
g′2

16π2

11

3
lnM2

Q̃
/M2

ew. (81)
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Figure 12: Vertex graph for the process e+e− → µ̃+µ̃−

that bears an anomalous threshold for the mass hierar-
chy mχ̃0

1
< mµ̃ < mχ̃0

4
.

Thus, even in spite of the fundamental identity of the renormalized Yukawa and gauge cou-
plings in supersymmetric theories in soft SUSY breaking scenarios, we find nevertheless log-
arithmically enhanced departures from universality in effective couplings at the electroweak
scale if the mass splitting in the supersymmetric multiplets is large.

The SU(2) Yukawa and gauge couplings can be treated analogously. From the wino self-
energy in Fig. 11 (b) the effective SU(2) Yukawa coupling ĝ2

eff can be defined. Together with
the on-shell renormalization of the SU(2) gauge coupling g, this leads to

ĝ2
eff

g2
eff

= 1 +
g2

16π2
3 lnM2

Q̃
/M2

ew (82)

for the ratio of the two effective Yukawa and gauge couplings in leading logarithmic order.
The logarithmic growth of the one-loop corrections will later be analyzed numerically

when the production of selectron pairs, involving the Yukawa couplings in t-channel neu-
tralino exchange amplitudes, will be compared with the production of smuon pairs in detail.

4.3 Anomalous Thresholds

The rich pattern of different masses in supersymmetric theories gives rise to anomalous
threshold singularities [17, 18] in vertex and box graphs [which play no role in general in
the Standard Model7]. While the vertex graph for e+e− → µ̃+µ̃− in Fig. 12 generates a
normal threshold singularity when the energy

√
s passes the threshold for χ̃0

1χ̃
0
4 production,

an additional anomalous singularity occurs for a special set of mass values mχ̃0
1
< mµ̃ < mχ̃0

4

at the kinematical point

s = sa ≡
m2

µ̃(m2
χ̃0

4
−m2

χ̃0
1
)2

(m2
µ̃ −m2

χ̃0
1
)(m2

χ̃0
4
−m2

µ̃)
. (83)

Here, as before, the muon mass has been neglected. The singularity can be traced back to
a zero value of the denominator function D in the vertex amplitude I, in a configuration
where all intermediate particles in the loop become on-shell at the same time,

I =

∫
d4q

f(q, pµ̃+ , pµ̃−)

D
, D = q2

[
(q + pµ̃+)2 −m2

χ̃0
1

] [
(q + pµ̃+ − pµ̃−)2 −m2

χ̃0
4

]
, (84)

7As an exceptional case, anomalous thresholds do occur in W+W− scattering in the Standard Model
[comment by T. Hahn].
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where f is a polynomial function. Even though the singularity is mild and can be integrated
over, it leaves its trace in a discontinuity of the cross-section.

The two different types of threshold singularities for the vertex introduced above are
exemplified in Fig. 13 and Fig. 14. The normal threshold singularity at

√
sn in Fig. 13 is

generated by the non-zero onset of the imaginary part of the 2-point functionB0(s,m
2
χ̃0

1
, m2

χ̃0
4
),

corresponding to a kink in the real part. In contrast, the anomalous threshold at
√
sa in

Fig. 14 is generated by the C0(s,m
2
µ̃, m

2
µ̃ , m

2
χ̃0

1
, m2

χ̃0
4
, 0) function, characterized by a kink in

the imaginary part which leads, if integrated out in a dispersion relation, to a step in the
real part [17].

4.4 Production Cross-Sections

Mediated by the pure s-channel γ/Z exchange mechanisms, the production of smuon pairs
is the most basic process of supersymmetric theories at e+e− colliders. The results for the
production cross-section will therefore be presented for this process first. Subsequently we
expand the analysis to selectron pair production in e+e− and e−e− collisions which involve
also t-channel neutralino exchange mechanisms. They will serve as an excellent instrument
to measure the electron-selectron-gaugino SU(2) and U(1) Yukawa couplings, which will be
analyzed at the end of this section.

4.4.1 Smuon production

After the renormalized transition amplitude for the process e+e− → µ̃+µ̃− is constructed
following the way outlined in the last section, the experimental parameters must be defined
properly. We use the on-shell definition for all masses, while the electromagnetic coupling
α will be evaluated at the scale of the center-of-mass energy Q =

√
s, so that the large

logarithmic corrections ∝ log s/m2
f from light fermion loops in the running of α(Q2) are

absorbed into this definition.
The resulting amplitude is UV finite but still infrared divergent. This divergence is

removed by adding the contributions from photon radiation in the initial and final states
to the cross-section. The virtual and real QED corrections form a gauge invariant subset
separate from the other virtual loop corrections.

Initial-state QED corrections: Adding to the loop-corrected cross-section the contribution
of soft photon radiation from the initial lepton lines, the ensuing cross-section factorizes into
the Born cross-section and a radiation coefficient that depends on the cut-off ∆E of the soft
photon energy (defined in the cms frame),

dσvirt+soft
ISR = dσBorn

α

π

[
log

(∆E)2

s

(
log

s

m2
e

− 1

)
+

3

2
log

s

m2
e

− 2 +
π2

3

]
. (85)

This ∆E dependence is removed if the radiation of hard photons is added to the cross-
sections. We are still left, however, with the logarithmic enhancement of the cross-section
from collinear radiation ∝ log s/m2

e. In leading logarithmic order the photon radiation
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effectively just reduces the cms energy available for the final-state particles [46]. This is
described by the convolution

dσLL(s) =

∫ 1

4m2
µ̃/s

dz ΓLL
ee (2α, z, s) σBorn(zs) (86)

of the Born cross-section with the radiator function [47]

ΓLL
ee (α, z,Q2) = δ(1 − z) +

α

2π
log

Q2

m2
e

1 + z2

1 − z

∣∣∣
z≤1−ε

(87)

(that can easily be generalized to higher orders [48]). The variable z denotes the energy
fraction left to the electron/positron parton after the radiation of the collinear photon. The
additional non-collinear photon radiation is treated numerically by applying Monte Carlo
integration techniques, with fast convergence after the leading logarithmic order is subtracted
analytically, as outlined above.

Final-state QED corrections: After adding up the vertex correction plus the final-state
photon radiation, the cross-sections for soft photons factorizes again in the Born cross-section
and a radiation function that depends on the photon cut-off energy ∆E,

dσvirt+soft
FSR = dσBorn

α

π

{
log

4(∆E)2

m2
µ̃

[
−1 +

1 + β2

2β
log

1 + β

1 − β

]
− 2 +

1

β
log

1 + β

1 − β

+
1 + β2

β

[
log

1 + β

1 − β

(
1 − 1

2
log

4β2

1 − β2

)
+
π2

3
+ Li2

1 − β

1 + β
− Li2

2β

1 + β

]}
.

(88)

Since the smuon mass is large, the velocity β = (1 − 4m2
µ̃/s)

1/2 of the smuons in the final
state stays sufficiently away from unity not to generate collinear singularities. The ∆E
dependence is neutralized when the hard photon contributions are added and integrated out
(numerically) to calculate the total cross-section.

The initial and final-state QED corrections do not interfere in the total cross-section
as a consequence of CP invariance. However, the amplitudes do in general interfere in the
calculation of final-state distributions.

In general it is not possible to divide the virtual loop corrections for slepton pair pro-
duction into SM-like corrections and genuine supersymmetric corrections. However, for the
special case of µ̃R pair production, a gauge-invariant and UV-finite subset of SM-like loop
contributions can be defined, including all diagrams where a SM fermion, gauge boson or
the lightest Higgs boson is attached to the tree-level graphs, and taking the mixing angle
α of the CP-even Higgs bosons to be α = β − π/2. The remaining loop contributions can
then be interpreted as the genuine virtual SUSY corrections. For this contribution we find
relative corrections of the order of 1%, as demonstrated in Fig. 15, which nicely illustrates
the onset of normal and anomalous thresholds in vertex and box diagrams with rising energy.
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relative to the Born cross-section. The corrections are separated into vertex and self-energy
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The variation of the corrections across the [M1, µ] and [M2, µ] planes has been studied in
Fig. 16 (a,b).

All crucial elements have now been collected to present the overall correction of the
total cross-section for µ̃R pair production. The parameters of the Snowmass reference point
SPS1a have been adopted again to illustrate the final results. As a function of energy the
correction normalized to the Born cross-section, defined for the running electromagnetic
coupling, is displayed in Fig. 17. Moreover, the total correction is broken down to initial-
state plus final-state QED corrections, the total SM corrections including just lines of SM
particles in the virtual corrections, and the genuine SUSY corrections introduced above.
The real photon radiation is treated in a fully inclusive way, i.e. both soft and hard photon
emission are included. The main contribution to the corrections can trivially be traced back
to the universal factorizable QED terms which are logarithmically enhanced. However, after
these dominant effects are subtracted, the remaining QED, weak-loop and genuine SUSY
contributions still amount to a level of 5%.

Thus precision measurements of the total cross-sections for slepton pair production, that
may reach a level of a few per-mille, require the one-loop radiative corrections to be included
properly. In this way a satisfactory understanding of the expected experimental results will
be achieved.
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4.4.2 Selectron production

In comparison to smuon pair production, the loop calculations to selectron pair production
are significantly more complex, the reason being twofold. An extra technical challenge is
introduced by the additional t-channel neutralino exchange mechanisms. These mechanisms
also give rise to delicate problems for gauge invariant subdivisions of diagram classes and
the subsequent renormalization procedures. The origin of the problems is the continuous
flow of charges from the initial to the final states while, at the same time, the Fermi/Bose
character of the charge line changes in the electron-selectron-neutralino Yukawa vertex — a
SUSY vertex sui generis. Related problems were encountered first in WW pair production
via t-channel neutrino exchange as opposed to muon pair production in e+e− collisions.

A transparent example is provided by the process e−Re
−
R → ẽ−R ẽ

−
R which is built up solely

by t-channel neutralino exchanges:

1. Closed loops of leptons and sleptons implanted in the virtual neutralino lines form a
gauge invariant subset of diagrams, and so do loops of quarks and squarks.

2. The diagrams involving massive gauge bosons, Higgs bosons, gauginos and higgsinos
however cannot be separated from the QED loops in a gauge-invariant manner any-
more. This follows from a simple argument. The set of photonic corrections to the
electron-selectron-neutralino Yukawa vertex is not UV finite, but only so after being
supplemented by the corresponding virtual photino diagram. Since the photino is not
a mass eigenstate, this amplitude is closely linked to the remaining degrees of free-
dom in the electroweak sector. Thus only the total set of gauge boson/Higgs and
gaugino/higgsino electroweak diagrams is gauge invariant.

Nevertheless, as expected on general grounds, soft real-photon radiation regularizes
the infrared divergences generated by the virtual photon diagrams, and the selectron
pair cross-section for soft photon radiation factorizes again into the Born term times
a radiator function. In leading logarithmic order of the soft-photon energy ∆E,

dσvirt+soft,log
ISR+FSR = dσBorn

α

π
log

(∆E)2

s

{
log

s

m2
e

+ 2 log 4

[
1 + log

m2
em

2
ẽ

(m2
ẽ − t)(m2

ẽ − u)

]
+

1 + β2

2β
log

1 + β

1 − β

}
,

(89)

where t and u are the invariant momentum transfers in the t-/u-channel.

In the same way, in leading logarithmic order, collinear photon radiation from the initial
beam line can be cast in the convoluted form of eqs. (86), (87). Note however that
virtual initial and final state radiation cannot (even not theoretically) be disentangled
anymore.

The influence on parameters of the Higgs (and higgsino) sector is rather mild since the
couplings of these fields to electron-type lines is negligible. Effects of Higgs bosons on the
self-energies of the Z boson and the neutralinos may naively be expected non-negligible.
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However, the leading effects of the Higgs boson spectrum on these parameters are only
proportional to the logarithm of the mass ratios of two Higgs bosons, e.g. ∝ logMA/MH.
As a result, these contributions are naturally suppressed.

The corrections to the RG improved Born cross-sections for selectron ẽR pairs in e+e−

and e−e− collisions are depicted in Fig. 18 (a) and (b). In addition to the full corrections, the
results are broken down to the individual contributions from closed loops of leptons/sleptons,
quarks/squarks and the remaining corrections involving gauge bosons, Higgs bosons, gaugi-
nos and higgsinos, as well as the QED corrections.

As before, we shall study the influence of the corrections induced through the supersym-
metry sector at some detail. Even though the genuine SUSY loops are intimately correlated
with the Standard Model loops, the higher-order effects vary widely over the supersymmetry
parameter space, measuring the influence of the SUSY degrees of freedom beyond the trivial
effects due to the masses and couplings of the selectrons produced in the final state.

A significant influence on the one-loop corrections arises from the electroweak gaugino
sector, characterized by the parametersM1, M2 and µ. As an example, the dependence of the
one-loop corrections relative to the Born cross-section on M2 and µ is shown in Figs. 19 (a)
and (b). The effects are maximal for small µ due to the higgsino loops affecting the W and
Z self-energies. [The rapid changes along the diagonal M2 = µ are a consequence of the
level crossings between the χ̃0

i states which induces drastic changes in the couplings to the
electroweak gauge bosons.]

As outlined earlier, big mass differences between the SUSY sfermions and the corre-
sponding SM fermions generate large effective Yukawa couplings and thus large superoblique
corrections to selectron production. This can nicely be illustrated by comparing the squark
loop effect on the smuon pair cross-sections with the selectron pair cross-section mediated
by t-channel neutralino diagrams. Beyond the low-mass threshold region, the squark con-
tributions are rising linearly in the logarithm of the squark masses for selectron production
while approaching a plateau for smuon production, where gaugino/higgsino lines are absent
at the Born level, cf. Figs. 20 (a) and (b).

4.4.3 The identity of SUSY Yukawa and SM gauge couplings

Selectron-pair production in e+e− collisions and, particularly, in e−e− collisions are excellent
channels for testing the identity of the SU(2) and U(1) SUSY Yukawa couplings and the
corresponding SM gauge couplings. Selectron production in e−e− collisions is mediated
solely by neutralinos, and the same is true for initial-state leptons of equal helicities in e+e−

channels, as evident from Table 1.
Asymptotically, the t-channel exchange is the dominant mechanism. As a consequence of

unitarity, the logarithmically leading part of the cross-section for high energies is independent
of the neutralino mixing parameters after all neutralino exchanges in the t-channel are added
up:

σ[e+ e− → ẽ+R ẽ
−
R]

s→∞−−→ ĝ′4

16π

log s

s
+ O

(
1

s

)
, (90)
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σ[e+ e− → ẽ+L ẽ
−
L ]

s→∞−−→ (ĝ2 + ĝ′2)2

16π

log s

s
+ O

(
1

s

)
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where ĝ and ĝ′ are the SU(2) and U(1) Yukawa couplings, respectively. However, very large
energies indeed would be needed before the asymptotic behavior is reached in practice.

In this subsection we shall study the sensitivity of selectron production to the Yukawa
electron-selectron-gaugino couplings and the errors expected experimentally. We assume
that the masses and mixing parameters of the neutralinos have been pre-determined in
chargino/neutralino pair-production, and we properly take into account the expected errors
in this sector. It is important to note that the mixing parameters affecting the selectron
production cross-sections depend only on the gaugino/higgsino mass parameters M1, M2

and µ. These parameters can be determined in the MSSM from the precision measurements
of three chargino and neutralino masses, for example, χ̃±

1 , χ̃±
2 and χ̃0

1, but independently
of the chargino/neutralino cross-sections [which would re-introduce the Yukawa couplings
otherwise].

To derive the size of the errors on the Yukawa couplings, we perform this study in the
one-loop approximation. Proper errors will be associated to all terms in the improved Born
approximation. However, the higher-order corrections can be calculated for the ideal values
of the parameters in the loops since their errors would affect the errors in the Yukawa
couplings only to second order which is consistently neglected. Iterative procedures may
later be employed for the next-level improvements.

The selectron production cross-sections are computed using the beam polarizations and
cuts introduced in Section 3.3. Since only total cross-section measurements will be considered
here, the one-loop corrections can be included by means of a simple K-factor. Besides the
neutralino parameters, the cross-sections crucially depend on the selectron masses, which
can be extracted from threshold scans, cf. Tab. 3. For the neutralino/chargino masses the
following errors are assumed, δmχ̃±

1
= 100 MeV, δmχ̃±

2
= 400 MeV, δmχ̃0

1
= 100 MeV, which

are taken slightly more conservative than the values in Ref. [20] to accommodate for possible
systematic effects. An error of 1% is assigned to the polarization degree of the incoming
electron/positron beams.

As discussed in Section 3, the L- and R-selectron states can be discriminated by con-
sidering the decay of the selectron ẽL into the neutralino χ̃0

2, followed by the decay chain
χ̃0

2 → τ+τ− χ̃0
1 and leading to the final states listed in Tab. 3. It is assumed that each tau

pair can be identified with an efficiency of ετ = 80%. In addition a global acceptance factor
of εdet = 50% is assigned for potential detector effects, that are not simulated in this study.

Taking into account all these statistical errors and systematic uncertainties, the con-
straints on the SU(2) and U(1) Yukawa couplings of the MSSM, ĝ and ĝ′, are presented in
Fig. 21 (a) and (b) for the SPS1a scenario. The results are based on 500 fb−1 data accumu-
lated in e+e− collisions at 500 GeV, and 50 fb−1 in e−e− collisions, respectively. From the
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ĝ
/g

−
1
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Figure 21: 1σ bounds on the determination of the supersymmetric U(1) and SU(2) Yukawa
couplings ĝ′ and ĝ from selectron cross-section measurements. The two plots compare the
information obtained from the cross-sections σRR = σ[e+ e− → ẽ+R ẽ

−
R] and σRL = σ[e+ e− →
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L ] in the e+e− mode (a) as well as σRR = σ[e− e− → ẽ−R ẽ

−
R] and σLL = σ[e− e− → ẽ−L ẽ
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in the e−e− mode (b), respectively. Parameters taken from the SPS1a scenario.

overlap regions the following expected 1σ errors are obtained:

e+e− :
δĝ′

ĝ′
≈ 0.18%,

δĝ

ĝ
≈ 0.8%, (92)

e−e− :
δĝ′

ĝ′
≈ 0.23%,

δĝ

ĝ
≈ 0.8%. (93)

As evident from these results, the expected sensitivity for the measurement of the Yukawa
couplings in the e+e− and e−e− modes are similar. The result for the determination of the
U(1) bino Yukawa coupling is comparable to a previous study, Ref. [49], while being slightly
more precise than an analysis based on the differential selectron cross-section [15].

The precision on the Yukawa couplings expected from selectron pair-production com-
pares favorably with corresponding measurements in chargino/neutralino pair production,
for which the errors are of similar though slightly larger magnitude [10, 49].

Thus it has turned out that one of the basic properties of supersymmetric theories, the
identity of Yukawa and gauge couplings, can be tested with accuracies down to the per-cent
and even per-mille level in selectron pair production at e+e− and e−e− colliders.
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5 Conclusions

We have presented in this report the theoretical basis for high-precision studies of the super-
symmetric partners to muons and electrons, the scalar smuons and selectrons, at future e+e−

and e−e− linear colliders. The theoretical material elaborated in the study is complemented
by phenomenological analyses of the masses and couplings of these particles.

Masses: A central target of experiments exploring the properties of supersymmetric
particles is the measurement of their masses. The experimentally observed particle masses
are connected with mass parameters in the SUSY Lagrangian that encode the breaking of
supersymmetry and are thus directly related to the basic structure of the supersymmetric
theory at the TeV scale. Extrapolating these parameters to high scales will allow us to
reconstruct the fundamental supersymmetric theory.

Precision measurements can be performed in the clean environment of high-energy lepton
colliders operating with polarized beams at high luminosity. The masses of scalar sleptons,
selectrons in particular, can be determined with unparalleled precision from threshold scans
as the excitation curves rise steeply with the energy above threshold, either with the third
power in the velocity for smuons or even linearly for selectron channels.

As a consequence, accurate theoretical predictions for the pair production are required to
match the expected experimental accuracies. The two theoretical key points in this context,
non-zero width effects and Coulombic Sommerfeld rescattering effects, have been elaborated
in detail. Special attention has been paid to preserving gauge invariance in truncated subsets
of the entire ensemble of Feynman diagrams describing the final states after the resonance
decays. The remaining contributions of this ensemble are taken into account as part of the
SUSY backgrounds, with the additional backgrounds from SM sources added on.

Based on this procedure, a phenomenological analysis of slepton masses in threshold scans
was performed, improving significantly on the theoretical reliability compared with earlier
simulations. While the excitation curves are characterized by their distinct rise near the
thresholds, including sub-dominant backgrounds reduces, somewhat, the precision expected
from previous studies. Nevertheless, a precision of about a few 100 MeV can be expected for
slepton masses around 200 GeV in general, corresponding to a relative error at the per-cent
to per-mille level. For the R-selectron mass, an accuracy of even 0.2× 10−3 can be obtained
from threshold scans in the e−e− mode, benefiting from the exceptionally sharp rise of the
S-wave selectron excitation.

Moreover, the threshold scans of selectron pair production can also be exploited to extract
the decay widths to accuracies between 10 and 20%.

Yukawa couplings: A key character of supersymmetric theories is the identity between

the Yukawa couplings ĝ(f f̃ Ṽ ) of the fermions, their superpartners and the gauginos, and the
gauge couplings g(ffV )/g(f̃ f̃V ) of the fermions and sfermions to the gauge bosons. The
identity of these couplings is crucial for the natural solution of the fine-tuning problem. It
must hold not only in theories with exact supersymmetry but also in theories incorporating
the breaking of supersymmetry, as to ensure the stable extrapolation of the system to energies
near the Planck scale — one of the defining raisons d’être for supersymmetry.
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In passing it may be noticed that the identity of the gauge couplings themselves in the SM
and SUSY sectors can be tested at the per-cent level. Smuon pair production is particularly
suited for extracting the gauge couplings in the SUSY sector as this process is mediated
solely by s-channel γ and Z-boson exchanges.

In contrast, the SUSY Yukawa couplings of the electroweak sector may be probed in
selectron pair production due to the neutralino t-channel exchange contribution. By carefully
analyzing statistical errors and systematic uncertainties we could demonstrate that these
couplings can be extracted from measurements of the total cross-sections in the high-energy
continuum with a precision of better than the per-cent level. In particular, this slightly
exceeds the accuracy that can be achieved by other methods, for example in the analysis of
chargino/neutralino pair production.

Matching this expected experimental accuracy with its theoretical counterpart requires
the calculation of the cross-sections to per-cent accuracy. For this purpose the complete
next-to-leading order one-loop SUSY electroweak radiative corrections were calculated for
the production of on-shell smuon and selectron pairs. The corrections were found to be
sizable, being of the order of 5–10%, with genuine SUSY corrections accounting for about 1%
in µ̃R pair production, where these corrections can be defined unambiguously and separated
consistently.

In all examples analyzed in this report, the production of scalar electrons in e+e− an-
nihilation has been compared to the corresponding processes in e−e− scattering. The e−e−

mode turns out to be particularly favorable for the measurement of the selectron masses
in threshold scans. In addition it can provide complementary information on the selectron
Yukawa couplings.

The detailed analytical expressions for the slepton pair production cross-sections are too
lengthy to be reported here in writing. The results are implemented in computer programs
that return the cross-sections for smuons and selectrons to one-loop order for whatever set of
Lagrangian parameters in the Minimal Supersymmetric Standard Model MSSM is chosen.
Computer codes are available from the web at http://www.fnal.gov/people/afreitas/.
[Technical information on installing and running the programs are given at the web site.]

The theoretical analysis presented in this report for smuons and selectrons is one of
the cornerstones for precision analyses of the supersymmetry sector in particle physics.
The precision that is expected to be achieved in future linear collider experiments requires
the analysis of many different channels in parallel — sleptons, charginos/neutralinos and
squarks/gluinos. The parameters of all these states affect mutually the theoretical predic-
tions at the one-loop level so that all the associated production channels must be analyzed
simultaneously. Such an overall analysis demands complementary and coherent experimen-
tal action at lepton and proton colliders — a program for which the present analysis is a
crucial building block8. This ensures finally a self-consistent picture of the SUSY sector at
the phenomenological level.

Beyond drawing a high-resolution picture of supersymmetry at low energies, the pre-
cise determination of these parameters provides the base for exploring the mechanism of

8Such a comprehensive study is presently underway, Ref. [50].
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supersymmetry breaking and the reconstruction of the fundamental supersymmetric theory,
potentially at scales near the Planck scale. In short, the high precision analyses provide us
with a telescope for exploring the structure of physics at the scale of ultimate unification of
genuine particle physics with gravity, as expected to be realized near the Planck scale.

Appendix

The theoretical results and the phenomenological analyses presented in this report, have
been based on the specific reference scenario SPS1a for the MSSM, defined in the set of the
“Snowmass Points and Slopes” [19].

The SPS1a point is a typical mSUGRA scenario characterized by fairly light sfermion
masses. If realized in nature, a wealth of experimental information would become available
on this supersymmetric theory from a linear collider operating in the first phase at energies
up to about 1 TeV.

The SUSY parameters of SPS1a are defined at the GUT scale for the following universal
values:

m0 = 100 GeV, M1/2 = 250 GeV, A0 = −100 GeV, tanβ = 10, µ > 0. (94)

The overall set is completed by the Standard Model parameters specified at the electroweak
scale as

α(MZ) = 1/127.70, mt = 175 GeV,

MZ = 91.1875 GeV, mb = 4.25 GeV,

MW = 80.426 GeV, mτ = 1.777 GeV.

(95)

The evolution of the soft SUSY breaking parameters (94) down to the electroweak scale by
means of the program Isajet 7.58 leads to the weak-scale parameters listed in Ref. [23].
Uncertainties due to the implementation of the renormalization group evolution are not
relevant for the purpose of the present study, since the MSSM parameters at the weak scale
are taken as the starting point for our analysis. Using the MSSM soft-breaking parameters
from Ref. [23] together with the SM parameters (95) the SUSY particles spectrum in Tab. 4
is obtained. The widths and branching ratios of the particles involved in the decay chains
of the sleptons can be found in Tab. 2.

The staus, squarks and Higgs bosons only enter in the loop corrections to smuon and
selectron pair-production. The masses of the Higgs bosons in the loop contributions must be
evaluated at tree level, in order to ensure the cancellation of gauge-parameter dependence
in the next-to-leading order result. On the other hand, some of the background processes
considered in Section 3.3 involve tree-level Higgs boson exchanges. In order to get reliable
predictions for these processes, it is necessary to include the large radiative corrections to
the Higgs masses, which for this purpose were calculated with the program FeynHiggs [51].

Added Note:

The SPS1a set of parameters generates the following predictions for the low-energy precision
observables: BR[b→ sγ] = 2.7 · 10−4 and ∆(gµ −2)/2 = 17 · 10−10. The amount of cold dark
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SUSY particles and masses

l̃R = ẽR/µ̃R 142.72

l̃L = ẽL/µ̃L 202.32

ν̃l = ν̃e /ν̃µ 185.99

τ̃1 132.97

τ̃2 206.29

ν̃τ 185.05

ũR 520.50

ũL 537.20

d̃R 520.11

d̃L 543.07

t̃1 375.74

t̃2 585.15

b̃1 488.01

b̃2 528.23

χ̃0
1 96.18

χ̃0
2 176.62

χ̃0
3 358.80

χ̃0
4 377.87

χ̃±
1 176.06

χ̃±
2 378.51

h0 [89.28] 122.71

H0 [394.07] 393.56

A0 [393.63] 393.63

Table 4: Mass spectrum in GeV of SUSY particles relevant for this study for the reference
scenario SPS1a [19]. The Higgs masses are given in Born approximation [square brackets]
and radiatively corrected.

matter is, with Ωχh
2 = 0.18, still compatible with WMAP data but somewhat on the high

side if they are supplemented by the ACBAR and CBI data.
Shifting the scalar mass parameter slightly downwards to m0 = 70 GeV, but not altering

any of the other universal parameters in SPS1a, drives the value for the density of cold
dark matter to the central band of the data, Ωχh

2 = 0.126, without violating the bounds
on BR[b → sγ] and ∆(gµ − 2)/2 [52]. Slepton, chargino/neutralino masses and branching
ratios relevant for the present analysis change within so limited a margin that none of the
conclusions in this report is affected to a significant amount.
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